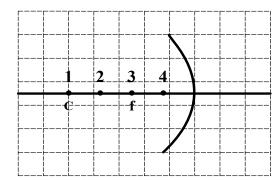
وَرَارِهُ الرِّبِيِّينَ وَالْعَلَامِ أَن

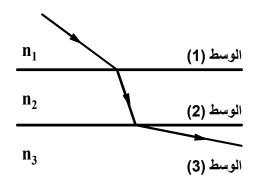
يرجى قراءة التعليمات المدرجة في دفتر الإجابة

امتحان شهادة دبلوم التعليم العام

تنسلان النبالة السلانة السلانة للعام الدراسي 1430/1429 هـ ـــ 2008 / 2009 م


الدور الثاني – الفصل الدراسي الثانى

• زمن الإجابة: ثلاث ساعات


- المادة: الفيزياء
- تنبيه: الأسئلة في (6) صفحات.
- استعن بالثوابت والقوانين المدرجة في الورقة الامتحانية.
- أجب عن جميع الأسئلة مع توضيح خطوات الحل في الأسئلة المقالية.

أولا: الأسئلة الموضوعية: السؤال الأول:

ضع دائرة حول الحرف الدال على الإجابة الصحيحة من بين البدائل المعطاة في دفتر إجابتك للمفردات (14-1) الآتية:

- 1- للحصول على صورة تقديرية أمام المرآة المقعرة الموضحة في الشكل المقابل، فإن الموضع الصحيح للجسم لابد أن يكون عند النقطة:
 - 1 (1) 2 (中)
 - (ج) 3 4 (2)

- 2- يمر شعاع ضوئي من الوسط (1) إلى الوسط (2) ثم إلى الوسط (3) كما هو موضح في الشكل المقابل . العلاقة بين معاملات الإنكسار في كل وسط من هذه الأوساط هي كالتالي:
 - $n_3 > n_1 > n_2$ (1)
 - $n_1 > n_2 > n_3 (\psi)$
 - $n_2 > n_1 > n_3 \ (\tau)$
 - $n_2 > n_3 > n_1 (2)$
- 3- إذا كان معامل إنكسار الماء (1.33)، فإن الزمن الذي سيستغرقه الضوء لكي يقطع مسافة (20m) في الماء بوحدة الثانية يساوى:
 - $1.13 \times 10^{7} (-)$

 8.8×10^{-8} (1)

 4.52×10^{9} (2)

 $2.25 \times 10^{8} \ (z)$

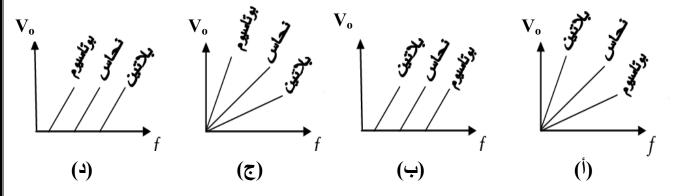
يتبع/2

الدور الثاني الفصل الدراسي الثاني المتحان مادة: الفيزياء

تابع السؤال الأول:

4- عدسة محدبة بعدها البؤري (f) ومقدار تكبيرها (M) . إذا وضع جسم على مسافة (d_0) من العدسة فإن بعد الصورة (d_i) يعطى بالعلاقة:

$$f(1+M)$$
 (\downarrow) $f(1-M)$ ($\mathring{\downarrow}$)


$$f(1+\frac{1}{M})$$
 (2) $f(1-\frac{1}{M})$ (ε)

5- محزوز حيود يحتوي على (600 line/mm) يسقط عليه عموديا ضوء أبيض، فإذا كان الخط الأحمر في طيف الرتبة الأولى يشاهد بزاوية مقدارها ((23°)) فإن الطول الموجي لهذا الخط بوحدة المتر يساوي :

$$6.5 \times 10^{-7} \ (\because)$$
 $1 \times 10^{-6} \ (\mathring{})$

$$1.7 \times 10^{-6} (2)$$
 $3.3 \times 10^{6} (5)$

6- إذا علمت أن تردد العتبة بوحدة (Hz) لكل من البوتاسيوم والنحاس والبلاتين يساوي على الترتيب (5.36×10^{14})، (10.7×10^{14})، (10.7×10^{14}) فإن أفضل تمثيل بياني للعلاقة بين جهد الإيقاف لكل منها وتردد الضوء الساقط هو:

7- عند اصطدام الفوتونات بسطح فلز فإنها:

8- إذا كانت (v) هي سرعة الإلكترون في المدار الأول لذرة الهيدروجين، فإن سرعة الإلكترون في المدار الثاني تساوي:

$$\frac{v}{4}$$
 (2) $\frac{v}{2}$ (5) $2v$ (4) $4v$ (1)

تبع/3

امتحان شبهادة دبلوم التعليم العام للعام الدراسي 2009/1429 هـ --2008/2009 م الدور الثاني – الفصل الدراسي الثاني

امتحان مادة: الفيزياء

تابع السؤال الأول:

9- انحراف دقائق ألفا عن مسارها في تجربة رذر فورد يعود إلى:

- (أ) صغر كتلة دقائق ألفا مقار نه بكتلة نو اة الذهب
 - (ب) مركز الذرة يحمل شحنة سالبة
 - (ج) كتلة الذرة مركزة في حيز صغير جداً
 - (د) وجود قوى تنافر كهربائية بينها وبين الذرة

10- عند الإنتقال من المستوى (n=3) إلى المستوى (n=2) في ذرة الهيدروجين المثارة فإن الطول الموجى للفوتون المنبعث بوحدة الأنجستروم يساوى:

- 6.56×10^3 (1)
- (ب) 6.56×10⁻⁷
- 4.55×10¹⁴ (ج)
- 4.55×10²⁴ (د)

11- كتلة نواة العنصر:

- (أ) أكبر من مجموع كتل نيوكليوناتها.
- (ب) أصغر من مجموع كتل نيوكليوناتها.
 - (ج) تساوى مجموع كتل نيوكليوناتها.
 - (د) تساوی عدد نیوکلیوناتها

 ^{238}U عدد جسيمات (lpha) وعدد جسيمات (eta) التي تنطلق من انحلال عنصر اليورانيوم الجاء ^{238}U إلى $\frac{206}{82}Pb$ عنصر الرصاص

$$\alpha=0$$
 و $\beta=4$

(أ) β=8 وα=6

(ج) β=6 وα=8

13- العنصر الذي طاقة الربط النووي له تساوي صفر هو:

$$_{1}^{1}H(2)$$

$$_{1}^{2}H(\tau)$$
 $_{1}^{3}H(\tau)$ $_{2}^{4}He(t)$

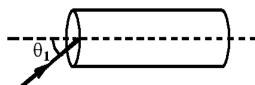
14- عنصر مشع عمر النصف له ساعتان فإن نسبة ما ينحل منه بعد مرور 6 ساعات يساوى:

(د) 87.5%

25% (τ) 12.5% (ψ) 6.25% (أ)

امتحان شهادة دبلوم التعليم العام للعام الدراسي 1430/1429 هـ ـــ 2008 / 2009 م الدور الثاني ــ الفصل الدراسي الثاني المتحان مادة: الفيزياء

ثانياً: الأسئلة المقالية:


السؤال الثاني:

- (أ) 1- اذكر نص مبدأ هيجنز.
- 2- وضعت شمعة مشتعله أمام عدسة فتكونت لها صورة مقلوبة مكبرة مرتين، فإذا كان البعد البؤري للعدسة (30cm) أوجد كلا من بعد الجسم وبعد الصورة عن العدسة.
- $(\sin\theta_r)$ الجدول التالي يعطي قيمًا لكل من جيب زاوية السقوط $\sin\theta_i$) وجيب زاوية الإنكسار ($\sin\theta_r$) لضوء عند انتقاله من الهواء إلى وسط مادي.

$sin\theta_i$	0	0.35	0.50	0.65	0.77	0.87	0.95	0.99
$\sin \theta_r$	X	0.23	0.33	0.43	0.51	0.58	0.63	Y

ادرس الجدول السابق ثم اوجد ما يليه:

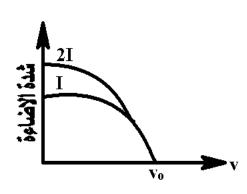
- 1- معامل الإنكسار لمادة الوسط.
 - 2- قيمة كلا من (X) و (Y)
 - 3- الزاوية الحرجة لهذا الوسط
- (ج) يسقط شعاع ضوئي على كابل الألياف البصرية المصنوع من الزجاج كما هو موضح في الشكل المقابل ادرسه ثم أجب عن الأسئلة التي تليه:

- 1- ما المقصود بظاهرة الإنعكاس الكلى الداخلى؟
- 2- أوجد أقصى زاوية سقوط (θ₁) للشعاع الضوئي على الكابل حتى ينعكس إنعكاسًا كليًا داخليًا. علما بأن معامل انكسار مادة الكابـــل تساوي (1.36).

(5)

امتحان شهادة دبلوم التعليم العام للعام الدراسي 1430/1429 هـ ـــ 2008 / 2009 م الدور الثاني الثاني الفصل الدراسي الثاني المتحان مادة: الفيزياء

تابع ثانياً: الأسئلة المقالية:


السؤال الثالث:

- (أ) 1- ما المقصود بقولنا: أن دالة الشغل للألومنيوم تساوي (4.08 eV)
- 2- علل: تتناسب شدة التيار الكهربائي المار في دائرة الخلية الكهروضوئية تناسبا طرديًا مع شدة الإضاءة الساقطة عليه.
 - 3- اذكر الانتقادات التي تعرض لها نموذج رذرفورد.
- (ب) 1- يوضح الشكل المجاور العلاقة البيانية لفرق الجهد بين المصعد والمهبط في خلية كهر وضوئية وشدة التيار الكهربائي الناتج عن سقوط ضوء تردده ($2 \times 10^{15} Hz$). احسب ما يلي:

 أ- الطاقة الحركية العظمى للإلكتر و نات المنبعثة.
- 2- فوتون أشعة سينية تردده $(1.6 \times 10^{19} \, Hz)$ اصطدم مع إلكترون مما أدى الى إنبعاث فوتون لأشعة السينية بتردد مقداره $(1.3 \times 10^{19} \, Hz)$ ما مقدار الطاقة الحركيه المكتسبه من قبل الإلكترون؟
 - 3- تم إثارة إلكترون في ذرة الهيدروجين فحدث إنبعاث للطاقة نتيجة انتقاله إلى المدار الأول فإذا كانت الطاقة المنبعثه تساوي (10.2 eV) أوجد ما يلي :
 - أ- رقم المدار الذي كان فيه الإلكترون قبل الانتقال.
 - ب- نصف قطر المدار.

ب- دالة الشغل لمادة المهبط

- ج- تردد الشعاع المنبعث.
- (ج) 1- فسر المنحنى البياني المقابل.

فرق الجهد بين المصعد والمهبط

2- من خلال در استك للطبيعة الموجية للإلكترون اثبت أن طاقة الحركة للإلكترون في مداره $\frac{1}{2} \frac{kZe^2}{r}$.

امتحان شهادة دبلوم التعليم العام للعام الدراسي 1430/1429 هـ ـــ 2008 / 2009 م الدور الثاني – الفصل الدراسي الثاني المتحان مادة: الفيزياء

تابع ثانياً: الأسئلة المقالية:

السؤال الرابع:

- (أ) 1- إذا كان للمادة طبيعة موجية فلماذا لا نلاحظ ذلك في حياتنا اليومية؟
 - 2- علل: لا يتغير العدد الكتلي للنواة عندما تشع جسيم بيتا.
 - 3- اذكر أربعة أغراض لاستخدام المفاعل النووي.
- (ب) 1- يدور إلكترون ذرة الهيدروجين حول نواته بكمية تحرك زاوية تساوي $(4.2 \times 10^{-34} kg.m^2/s)$ احسب طول موجة دي برولي.
- 2- يحتوي الهواء على عنصر الرادون $\frac{222}{86}Rn$ بكميات متفاوتة، وينتج هذا الغاز المشع عن الصخور التي تحتوي على عنصر الراديوم $\frac{226}{88}Ra$ أجب عما يلي :

اً-اكتب معادلة إنحلال عنصر الراديوم $^{226}_{88}Ra$ إلى الرادون $^{222}_{86}Rn$

ب-حدد نوع الجسيم المصاحب لهذا النشاط الإشعاعي.

- $^{222.00u}$ ج- احسب طاقة الربط النووي لنواة عنصر $^{222}_{86}$ علما بان كتلتها الذرية تساوي $^{222.00u}_{86}$ د-أي الأنوية المذكورة أكثر استقرارًا ؟ فسر إجابتك، إذا علمت أن طاقة الربط النووي لعنصر الراديوم $^{226}_{88}$ تساوى $^{226}_{88}$ تساوى $^{226}_{88}$.
- (ج) تشع نواة عنصر الثوريوم 232 جسيم α وتتحول إلى نضير عنصر الراديوم 228 جسيم α فإذا علمت أن الكتلة والطاقة الناتجة عن هذا الإشعاع عبارة عن طاقة حركة للجسيم فإذا علمت أن الكتلة الذرية لثوريوم228 228.002 ، والراديوم 228.002 ، والراديوم 228.002 ، والمراديوم 228.002 ،
 - 1- اكتب معادلة الإشعاع.
 - 2- احسب الطاقة المتحررة بوحدة الجول أثناء هذا الإشعاع .
 - -3 احسب سرعة جسيم

انتهت الأسئلة مع تمنياتنا لكم بالتوفيق والنجاح

.2000/200	ite. In Italia Ite. Inc. 1960	القوانين والثوابت لمادة الفيزياء _ الفصل الـ
حدة الرابعة/الفيزياء الذرية	الوحدة الثالثة / الموجات الكهرومغناطيسية	
الفصل الثامن/ الطاقة النووية	ل السابع/ تطور النموذج الذري	فصل الخامس/ الطبيعة الموجية للضوء الفصل السادس/ التأثير الكهروضوئي الفصل
$E = \Delta mc^{2}$ $E = \left[\left((A - Z)m_{n} + Zm_{p} \right) - (M_{N}) \right] u \times c^{2}$ $E = \left[\left((A - Z)m_{n} + Zm_{p} \right) - (M_{N}) \right] 931.494 MeV$ $E = \frac{E}{A}$ $\frac{\Delta N}{\Delta t} = -\lambda N$ $T_{\frac{1}{2}} = \frac{0.693}{\lambda}$	$\frac{e}{m} = \frac{E}{B^2 r} \qquad \frac{e}{m} = \frac{E}{m}$ $mvr_n = \frac{nh}{2\pi} \qquad r_n = r$ $r_n = \frac{kZe^2 4\pi^2 mr_n^2}{n^2h^2}$ $E_n = -\frac{13.6}{n^2}$ $r_n = \frac{n^2 h^2}{4\pi^2 mkZe^2}$ $\frac{1}{\lambda} = -\frac{E_1}{hc} \left[\frac{1}{n^2} - \frac{1}{m} \right]$ $\lambda = \frac{h}{mv}$ $2\pi r = \frac{1}{2}$	$C = \lambda f$ $m = \frac{c}{v}$ $m = \frac{h_i}{h_o} = -\frac{d_i}{d_o}$ $m = \frac{\sin \theta_i}{\sin \theta_r}$ $m_1 \sin \theta_i = n_2 \sin \theta_r$ $m_1 \sin \theta_i = n_2 \sin \theta_r$ $\frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i}$ $\frac{\sin \theta_1}{\sin \theta_2} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2} = \frac{n_2}{n_1}$ $d \sin \theta = (m + \frac{1}{2})\lambda$ $d \sin \theta = \pm m\lambda$
$r_1 = 0.529 \times 10^{-10} m$ $e = 1.6 \times 10^{-19} C$	$\frac{e}{-} = 1.76 \times 10^{11} C/kg$	$h = 6.63 \times 10^{-34} J.s$
$m_n = 1.00866 \text{ u}$ $m_e = 0.00054864 \text{ u}$	m = 1.007276 u	
	h	$m_e = 9.1 \times 10^{-31} k$